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       Abstract

 In a variety of materials superconductivity is associated with the existence of a
quantum critical point (QCP). In the case of the hole doped cuprates there is
evidence which suggests that the important quantum degrees of freedom near the
superconducting critical point are localized charge and spin density fluctuations.
We argue that if these degrees of freedom are strongly coupled by spin-orbit
interactions, a new type of quantum criticality arises with monopole-like quasi-
particles as the important quantum degrees of freedom,. In layered material this
type of quantum criticality can be modeled using a 2-dimensional non-linear
Schrodinger equation with an SU(N) gauge field. We exhibit a pairing wave
function for quasi-particles that has topological order and anisotropic properties.
The superconducting transition would in some respects resemble a KT transition.

    1. Introduction

In a variety of materials it has been observed that superconductivity is associated
with quantum critical magnetic fluctuations [1,2,3] Such an association also appears in the
case of the electron doped high Tc superconducting cuprates. However, in the case of the
hole doped cuprates the association of superconductivity with a quantum critical point
(QCP) is less obvious, although anomalous behavior of transport properties for
temperatures above Tc may be evidence for proximity to a QCP [4]. These
measurements suggest that the QCP is hidden inside the superconducting region of the
phase diagram.

In the case of the occurrence of superconductivity in the pyrochlore  Ce2Re2O7 , there
is a strong hint as to the essential physics involved by virtue of the circumstance that the
superconductivity at low temperature appears to be related to a “ferroelectric” transition
associated with a cubic to a tetragonal martensitic transformation that occurs near 200 K [5].
The first order structural phase transition appears to be accompanied by a continuous
second order phase transition that fits Anderson and Blount’s description [6] of a
“ferroelectric” transition in a conductor. Although it is not possible to have macroscopic
electric fields in a metal because of screening, short range electric field fluctuations can occur,
and in a “bad metal” these electric field fluctuations can extend over mesoscopic distances.
In the hole doped cuprates there is abundant evidence that unscreened electric fields occur
along the c-axis [7]. It is our thesis that it is spin-orbit interactions between charge carriers
and electric fields that is responsible for the superconductivity of Ce2Re2O7 and the hole
doped cuprates.



In the case of the hole doped cuprates, evidence that charge and spin fluctuations
might be associated with the occurrence of superconducting is provided by evidence for a
spin glass phase in LaCuO4 doped with Sr . The existence of a spin glass phase for hole
dopings between the antiferromagnetic and superconducting regions was suggested some
time ago by magnetization measurements [8]. More recently Panagopolous [9] has used
muon spin rotation to show that a spin glass phase in LaCuO4 doped with Sr actually
extends all the way from zero hole doping to a hole doping near to optimal doping; i.e.
roughly in the middle of the superconducting region. Thus it appears quite plausible that
there is an intimate connection between the critical fluctuations associated with this spin glass
phase and high Tc superconductivity.

Although to our knowledge it has never been suggested that spin orbit interactions
play an  important role in the cuprates, it has been known for a long time that spin obit
effects lead to interesting effects in transition metal oxides. For example, spin orbit effects
are responsible for  the magnetic anisotropy of ferrite materials. In Fe2O4 doped with Co
spin orbit interactions in the presence of a Jahn-Teller distortion lead to a switching of the
easy axis from <100> to <111>.  In the case of the cuprates there may also be interesting
effects related to Jahn-Teller distortions; indeed, this was one of the original  motivations for
looking for superconductivity in the cuprates [10]. However, the more immediate reason for
our interest in spin orbit effects in oxide materials is the experimental discovery of the spin
Hall effect in semiconductors.

 
2. Spin currents in layered conductors

Murakami, Nagaosa, and Zhang [11] and Sinova, et. al. [12] have pointed out that in
the presence of an external electric field the Rashba spin orbit interaction term in a
semiconductor will give rise to pure spin currents; i.e. a spin polarization current without a
flow of electric charge. The predicted form of the spin current suggests that if an electric field
is applied in the plane of a semiconductor channel with a large Rashba coupling, then equal
and opposite out of plane spin polarizations will appear at the edges of the channel. In
contrast with the anomalous Hall effect these edge spin polarizations are not accompanied
by a buildup of electric charge.  Experimental evidence for the existence of such an intrinsic
spin Hall effect has been found in the case of a 2-dimensional hole liquid in a semiconductor
heterostructure [13]. In the presence of impurities there is in addition to the intrinsic effect an
extrinsic spin Hall effect associated with the impurities In the following we will explore
whether a spin Hall effect associated with unscreened electric fields, e. g.  along the c-axis,
might play a role in high Tc superconductivity.



The spin current inside a 2-dimensional conductor is defined to be
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where the integral extends over the occupied states of the conduction band. In general,
quantum ground states can have non-vanishing spin currents, but only if inversion symmetry
is broken and spin-orbit effects are important. In the presence of a uniform electric field E the
induced spin current due to spin orbit interactions will have the form [11]:
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where ss is the spin Hall “conductivity”. In a metal or semiconductor ss will be proportional to
the Fermi momentum, and in a typical semiconductor will actually be comparable in
magnitude to the ordinary electrical conductance. Of course, inside a good conductor there
will be no macroscopic electric field due to screening, and so the spin current induced by the
external field will vanish. However, in a conductor with a low carrier density there can be local
electric fields and hence spin currents due to charge fluctuations even in the absence of an
external field. Furthermore, and this is the point of greatest interest to us, due to spin-orbit
interactions the local charge fluctuations and induced spin currents might be viewed as
collective excitations of an electronic quantum fluid.  

In order to describe the effect of screening on spin-orbit induced effects, we
introduce an equation which relates the Lorentz magnetic field seen by conduction electrons
to an effective screening length. In a 2-dimensional conductor and in the presence of
screening Guass’ law becomes [14]
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where Beff is the out of plane component ( i.e. perpendicular to the layer) of the Lorentz
magnetic field seen by conduction electrons, r is the charge per unit area, and k  is the
inverse of a effective screening length for spin orbit effects.. Averaging Eq. (2) over  a
mesoscopic area yields

            Beff  =
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In a layered conductor with a low carrier density Eq.s (2) and (4) might be interpreted as
constitutive equations for a quantum fluid, somewhat analogous to the infinite conductivity
MHD equations.

In order to obtain a picture of the collective excitations in the 2-dimensional quantum
fluid defined by Eq’s. (2) and (4), we introduce a non-linear Schrodinger equation for spin
polarized carriers
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where   
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m  refers to spin up or down along the z-axis, i.e. perpendicular to the conducting
plane, and 

† 

Di = ∂i - ieAi  . The gauge fields 

† 

A0 and 

† 

Ai  do not satisfy Maxwell’s equations,
but  instead are determined from the charge and current densities by solving Eq’s (2) and
(3).  As shown by Jackiw and Pi  [14] the time independent version of Eq. (5) can be
exactly solved if one assumes Eq. (4) holds and that g=±e2/mk. In this case there are
vortex-like solutions with associated spin currents that satisfy Eq. (2) with  

† 

Ei = -∂iA0 ,

† 

A0 = r /(2k) , and ss= k. In the case of a single vortex, the spin current resembles the flow
around a quantized vortex core in superfluid helium.

In a 3-dimensional layered material one may also have to take into account interlayer
tunneling. Indeed as originally suggested by Anderson [15] interlayer tunneling in the hole
doped cuprates may play an important role in high temperature superconductivity.
However, rather than following Anderson’s discussion, we follow our earlier scheme [16,17]
]for  dealing with the effects of interlayer  tunneling by introducing a non-linear Schrodinger
equation for an SU(N) wave function F for spin polarized carriers, where N is the number of
layers:
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where 
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Ai  are now SU(N) gauge fields and 
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D = — + ie[A, . Following Grossman [18]
we choose 
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Ai  to lie in the Carton subalgebra of SU(N) and F to be a ladder operator within
the adjoint representation.

If we choose the 

† 

Ai  to lie within the Cartan subalgebra of SU(N), the out of plane
Lorentz magnetic field Beff =
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Instead of Eq. (4),  which relates the effective magnetic field to the charge density per unit
area in a single layer, we now have an equation which allows the effective magnetic field to
vary from layer to layer, but for each layer the effective field is still proportional to the spin
polarized charge density per unit area. As in the 2-dimensional case Eq’s. (6) and (7) can
be exactly solved when g=±e2/mk.

The in plane electric field Ej  = 

† 

-∂iA0 - [Ai,A0] will be given by
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where 
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j j  is the current
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Thus the in plane electric field and spin polarization current are formally related in much the
same way as the electric field and spin current in a 2-dimensional semiconductor with a large
spin orbit coupling.  Of course, the spin polarized current (9) also carries electric charge and
so it will only be possible to identify Eq. (8) with a pure spin current when we consider
pairing of self-dual and anti-self-dual solitons.

In the limit N -> • the effective magnetic field (7) becomes [16]
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where X is now a 3-dimensional coordinate. Thus the vortex-like solitons solutions for a
single layer morph into dyon-like quasi-particles in the limit N -> •. These dyon-like quasi-
particles resemble polarons in that they carry electric charge, but differ from polarons in that
they also carry an effective magnetic  charge and are associated with spin currents.

3. Superconducting wave function

The ground state wave function for the non-linear Schrodinger equation (6) assuming
that Eq.(7) also holds and g=±e2/k has the form [16]
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where Rjk
2  = Ujk

2  + 4 (zj - zk )(z j - z k ), Ujk = Uj - Uk , and f (z ) is an entire function of the zj .

The product on the right hand side of (1) replaces the zj - zkk > j’
-q / p

 factor in Laughlin’s

fractional quantum Hall effect wave function [19]. Like the Laughlin quasi-particles which
obey fractional statistics, the dyon-like quasi-particles (referred to as “chirons” in ref. 16)
described by the wave function (1) have interesting holonomy properties. The complex
phase or “action” associated with a quasi-particle whose 3-dimensional position is
parameterized by X ≡ (z, U) where z=x+iy will be given by
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where Rj
2 = (U - Uj )

2 + 4(z - z j)(z - z j) . The change in phase moving around a
quasi=particle located at  z = zk , U=Uk is
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Thus for cyclic changes in z our 3-dimensional quasi-particles behave like anyons with 1/2
fractional statistics. It should be noted though that the holonomy is non-trivial only if Ujk ≠ 0,
so that in our case the effects of the non-trivial holonomy necessarily involve 3 spatial
dimensions. It can be shown [16] that our model wave function (11) describes a
topologically non-trivial self-dual or anti-self-dual manifold in 4-dimensions. Furthermore
pairing of self-dual and an anti-self-dual solutions describes a topologically trivial manifold in
4-dimensions [17]. The next question is whether this paired wave function describes a
superfluid?

Actually the quasi-particle phase (12) suggests a connection with the Kosterlitz-
Thouless (KT) transition in helium films [20]. A KT-like  transition also occurs in
superconducting films and the XY model for a 2-dimensional ferromagnet. The KT transition
in the XY model consists of a condensation of vortex and anti-vortex configurations of
planar spins into bound state pairs. Each XY spin is described by an angle Q; and the
vortex configurations implicated in the KT transition have the form:

                       Q(z) = mi Im ln(z-zi),                                                         (14)
where the integer mi is the quantized circulation of the vortex (or anti-vortex if mi is negative)
located at zi. Expression (14) is remarkably similar to our expression (12) for the phase of
our quasi-particles. On the high temperature side of the KT transition the XY model is
equivalent to a 2-dimensional gas of vortices with Coulomb-like interactions, while on the
low temperature side of the transition the model becomes a scale invariant theory of
massless spin waves. It seems plausible to conjecture that the pairing of self-dual and anti-
self-dual quasi-particles should resemble the conformally invariant KT phase, and therefore
the paired sate may also posses similar properties.

The conformally invariant phase of the XY model posses many features in common
with conventional superconductors with long range off-diagonal order (ODLRO) such as a
superfluid ground state and persistent currents.  Therefore on the basis of the similarity of
our 3-dimensional quasi-particles and KT vortices we expect that pairing of self-dual and
anti-self-dual quasi-particles does indeed describe a superfluid state – though perhaps a
state with only topological order rather than ODLRO. Amusingly observations of a Nernst
effect in the underdoped cuprates suggest that the superconducting transition in the hole
doped cuprates is actually a KT-like transition [21]. It is tempting to speculate that this KT-like



behavior is just a reflection of the fact that our 3-dimensional quasi-particles retain many of
the characteristics of the vortex-like soliton solutions of the 2-dimensional  spin Hall effect
and equations (4) and (5).   

                  4. Conclusion
Although one doesn’t normally think of spin orbit interactions as being important in

cuprate materials, the discovery of the spin Hall effect in semiconductors raises the question
as to whether similar kinds of effects might not exist in transition metal oxides which are also
poor conductors. Indeed applying the same constitutive equations to a layered conductor
as have been used to describe the spin Hall effect, we have arrived at a theory of quantum
critical behavior where the quantum degrees of freedom are dyon-like quasi-particles.  W e
argued that attraction between these quasi-particles leads to a superfluid state with some
similarities to the KT state. In a sense the mysterious “glue” responsible for  high Tc

superconducting is just the attraction between magnetic monopoles of opposite charge.
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